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1. Introduction

Last year, the direct evidence for neutrino oscillation [1] was found in three kinds of exper-

iments, namely atmospheric neutrino experiment [2], reactor neutrino experiment [3] and

K2K experiment [4]. In these experiments, the dip of neutrino oscillation and the energy

dependence of the probability, were observed. The possibilities of neutrino decay [5] and
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neutrino decoherence [6] are excluded by these results and it is found that the only solution

for the solar and the atmospheric neutrino problem is neutrino oscillation. The observation

of the dip also means that the neutrino experiments herald in a new era of precise mea-

surements, because the effect, which disappears by averaging out the time-varying part on

the neutrino energy, has been observed in these experiments for the first time [2 – 4]. Solar

neutrino parameters have been also accurately determined by recent neutrino experiments

such as SNO and KamLAND [7, 8].

From the results of the past experiments, it was found that the solar neutrino deficit

is explained by the Large Mixing Angle (LMA) MSW [9] solution [7, 8, 10, 11],

∆m2
21 ∼ 8.0 × 10−5eV2, sin2 2θ12 ' 0.8, (1.1)

where the mass squared difference is defined by ∆m2
ij = m2

i − m2
j . It was obtained that

|∆m2
31| ∼ 2.0 × 10−3eV2, sin2 2θ23 ' 1.0 (1.2)

from the atmospheric neutrino experiment [12]. Furthermore, the upper bound of the 1-3

mixing angle, sin θ13 is given by

sin2 2θ13 ≤ 0.2 (1.3)

from the reactor experiment [13]. The next step for neutrino physics is the determination of

sin θ13, the sign of ∆m2
31 and CP phase δ. In particular, the measurement of the leptonic

CP phase is one of the most important themes from the viewpoint of the origin of the

universe. CP violation has been investigated also in quark sector for the first time and the

Kobayashi-Maskawa theory has been established [14]. However, it has been found that the

CP violation in quark sector is too small to generate the sufficient baryon number in the

universe [15], because the electroweak symmetry breaking is not the first phase transition

as the Higgs particle is too heavy. This means that the origin of baryon asymmetry of the

universe is not a CP violation from the KM phase and an extra source of CP violation is

needed. One of the alternatives is the generation of a baryon number due to the leptonic CP

violation [16]. The possibility of this scenario has been investigated by many researchers

[17].

In order to attain the next step, the long baseline experiments like superbeam exper-

iments [18] and neutrino factory experiments [19] are planned. In these experiments, the

earth matter effects disturb the observation of the CP violation because the matter in the

earth is not CP invariant and generate the effects of fake CP violation. Therefore, it is

very important to understand the earth matter effects in neutrino oscillation experiments.

Here, summarizing the results of the atmospheric, solar and reactor neutrino experi-

ments, there are two small parameters

α =
∆m2

21

∆m2
31

∼ 0.04, (1.4)

s13 = sin θ13 ≤ 0.23. (1.5)

The magnitude of these small parameters is most important for measuring the CP violation,

because it cannot be observed, if one of these parameters vanishes. As the LMA MSW

– 2 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
3

solution was chosen to explain the results of the solar neutrino experiments, α reduced to

the largest value compared to other solutions. This means that the LMA MSW solution

opens the door for measuring the leptonic CP violation. If s13 is too small, it will be

impossible to observe the CP violation. Therefore the magnitude of s13 controls whether

the leptonic CP violation can be observed or not.

Let us briefly review the approximate formulas using the small parameter α or s13

and the related papers. At first using the perturbation of oscillation probability in α, the

magnitude of the fake CP violation by the matter effects has been investigated in [20 –

24]. Furthermore, by expanding the matter potential to the Fourier mode, it has been

shown in [25, 26] that the mode with large wavelength mainly contributes to the oscillation

probability. Higher order perturbative calculations have been performed by [27, 28]. The

perturbation in s13 has been investigated in [29]. The perturbation in both α and s13 has

also been studied in [30, 31] and this method has been extended to all channels in [32].

Next let us review the remarkable features related to the leptonic CP violation. In

the case of constant matter density, the notable identity J̃∆̃12∆̃23∆̃31 = J∆12∆23∆31 has

been found in [33 – 35], where J is the Jarlskog factor related to the leptonic CP violation,

∆ij means ∆m2
ij/(2E) and tilde stands for the quantities in matter. In addition, it has

been pointed out that the oscillation probability in matter almost coincide with that in

vacuum under the certain condition, which is called vacuum mimicking phenomena, and

the method to solve the problem on the fake CP violation by using the phenomena is

discussed in detail [36 – 38]. Furthermore, it can be applied to the future long baseline

experiments by using the statistical method explained by [39, 40].

In a previous series of papers [41 – 45] we have considered the three generation neutrino

oscillation in matter and have shown that the CP dependence of the oscillation probabilities

are derived exactly [41]. In the case that νe is included in the initial or final state, the CP

dependence is given by

P (νe → νe) = Cee, (1.6)

P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ , (1.7)

and in the case that both the initial and final state are να, νβ = νµ, ντ , the CP dependence

is given by

P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ + Dαβ cos 2δ + Eαβ sin 2δ, (1.8)

where the coefficients Aαβ ∼ Eαβ are independent of the CP phase. We have also shown

that these coefficients can be calculated exactly in constant matter and then the approx-

imate formulas are derived in a simple way [42, 43]. Furthermore, we proposed a new

method for approximating these coefficients in the case of non-constant matter density

[44], and then applied it to the earth matter [45].

In this paper, at first within the framework of two generations, it has been shown that

perturbation of the small mixing angle is not effective near the MSW resonance point. This

means that the non-perturbative effects by the small mixing angle is important in the MSW

resonance region. Next, we consider non-perturbative effects of ∆m2
21/∆m2

31 and sin θ13 in
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the three generation neutrino oscillation. The importance of the non-perturbative effects

is shown by comparing the exact numerical calculation with the perturbative expansion of

the small parameters. Furthermore, we consider the method for deriving the approximate

formulas in which the non-perturbative effects are taken into account. In our previous

paper [44], the approximate formulas for P (νe → νµ) have been derived. These formulas

are effective for both MSW resonance regions. However, there is a problem because this

method cannot be extended to other channels P (νµ → ντ ) and so on. In order to solve

this problem, we assume the two natural conditions, θ23 = 45◦ and the symmetric matter

potential. Under these conditions, we derive the approximate formulas for all channels,

including non-perturbative effects of the two small parameters. These formulas are useful

to solve the problem of parameter degeneracy.-

2. Non-perturbative effect by small mixing angle

In this section, we discuss the perturbative expansion of a small mixing angle in two gener-

ation neutrino oscillation. Although we discussed the perturbation of small parameters in

our previous papers [44, 45], in order to clarify the physical meaning, we consider the per-

turbation due to a small mixing angle within the framework of two generations. Then, we

show that the perturbation breaks down in the MSW resonance region even if the mixing

angle is small.

2.1 MSW Resonance of Probability in Two Generations

In this subsection, we consider the two generation neutrino oscillation and we choose

the energy region and the baseline length in which the MSW resonance occurs. Let us

start from the Hamiltonian in constant matter

H = Odiag(0,∆)OT + diag(a, 0) (2.1)

= Õdiag(λ1, λ2)Õ
T , (2.2)

where the matter potential is defined by a =
√

2GF Ne. GF is the Fermi constant and Ne

is the electron density in matter. The matrix O is mixing matrix as

O =

(

cos θ sin θ

− sin θ cos θ

)

, (2.3)

where ∆ = ∆m2/2E and the quantities with tilde stand for the quantities in matter.

Diagonalizing (2.1) to (2.2), the effective masses λi(i = 1, 2) and effective mixing angle θ̃

are determined. If we use the notation ∆̃ = λ2 − λ1 as the mass squared difference, there

is a relation between the mass squared difference and the mixing angles as

∆̃

∆
=

sin 2θ

sin 2θ̃
=

√

(

cos 2θ − a

∆

)2
+ sin2 2θ. (2.4)

Using these quantities in matter, the oscillation probability is given by

P = sin2 2θ̃ sin2 ∆̃L

2
. (2.5)
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The oscillating part with L/E of this probability becomes large if the condition

sin
∆̃L

2
∼ 1 (2.6)

is satisfied. On the other hand, the condition for the maximal effective mixing angle is

given by

sin 2θ̃ ∼ 1. (2.7)

In the case of small mixing angle, this condition is rewritten as a = ∆ cos 2θ ∼ ∆, and

furthermore we define the resonance energy by

E ∼ ∆m2

2a
. (2.8)

We also define the resonance length by

L ∼ 1

a sin θ
. (2.9)

For the case of sin θ = 0.16, which is the upper bound in the CHOOZ experiment, the

resonance length is roughly estimated as 10000 km. This means that in near future it

is impossible to realize the long baseline experiments such that the baseline length from

beam source to the detector is nearly equal to the resonance length. However, it has been

shown [38] that matter effects exist even if the baseline length is shorter than the resonance

length. Therefore, we use L = 6000 km as the baseline length in the later sections.

2.2 Perturbation due to Small Mixing Angle

Next, let us consider the expansion of the effective mass ∆̃ and the effective mixing

angle sin 2θ̃ by a small mixing angle sin θ. We show that although the effective mass and

the effective mixing angle diverge in the MSW resonance energy region, the oscillation

probability, which is a function of these two quantities, converges.

At first, the effective mass is expanded as

∆̃ = |∆ − a| + 2a∆

|∆ − a| sin2 θ +
a2∆2

2|∆ − a|3 sin4 θ + · · · . (2.10)

One can see from this result that other terms than the first term diverge. The higher

order term have larger divergence near the MSW resonance. The effective mixing angle is

expanded as

sin 2θ̃ =
∆ sin 2θ

|∆ − a|

(

1 − 2a∆

(∆ − a)2
sin2 θ +

3a2∆2

2(∆ − a)4
sin4 θ + · · ·

)

. (2.11)

The condition

sin θ <
|∆ − a|
2
√

a∆
(2.12)
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is needed for sin 2θ̃ to converge the finite value. However, this condition cannot be satisfied

in the MSW resonance region defined by ∆ ∼ a, even if sin θ is small. This means that the

above perturbation series diverges. In the expansion for the effective mass and the effective

mixing angle, the coefficients become large, even if these quantities are expanded by the

small mixing angle.

Next, let us consider the oscillation probability and let us demonstrate that the oscilla-

tion probability reaches a finite value, where the divergences due to the effective mass and

the effective mixing angle are canceled out by each other. Substituting (2.10) and (2.11)

into (2.5), we obtain

P ∼ ∆2 sin2 2θ

(∆ − a)2
sin2 (∆ − a)L

2
+

+
∆2 sin2 2θ

(∆ − a)2

[

−4a∆ sin2 θ

(∆ − a)2
sin2 (∆ − a)L

2
+

a∆L sin2 θ

∆ − a
sin(∆ − a)L

]

+ · · · . (2.13)

In the limit, ∆ ∼ a, it is found that the oscillation probability becomes finite as

P ∼ cos2 θ

(

sin2 θa2L2 − 1

3
sin4 θa4L4 + · · ·

)

. (2.14)

From this equation, the oscillation probability becomes finite and the perturbation is a

good approximation if

L <
1

a sin θ
. (2.15)

As you see from (2.9), this is the condition that the baseline length is shorter than the

resonance length.

Next, let us investigate the magnitude of non-perturbative effects numerically. We use

the following parameters, ∆m2 = 2.0 × 10−3 eV2 and sin θ = 0.16. We set the baseline

length, L = 6000 km and the energy region, 1 GeV ≤ E ≤ 50 GeV, to include the MSW

resonance energy. Furthermore we choose a density of ρ = 4 g/cm3.

At first, in figure 1a the level crossing of two eigenvalues is plotted. It is shown that

the crossing energy is about 6-7 GeV, which corresponds to the MSW resonance energy.

Next, in figure 1b we compare the oscillation probability calculated by perturbation with

the one by numerical calculation. These figures show that the perturbation breaks down

around the MSW resonance energy. The results of this subsection are summarized as

1. The perturbative expansion in the small mixing angle breaks down around the MSW

resonance because the perturbation because the perturbation series diverges. The

coefficients of this expansion become larger around the MSW resonance. The diver-

gence included in the effective mass cancels with that in the effective mixing angle,

and as a result, the value of the oscillation probability reaches a finite value. Term

of eq. (2.10) and (2.11) cancel with each other.

2. Although the divergences of the effective mass and the effective mixing angle in

the perturbative expansion cancel in the oscillation probability, the finite value of
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(a) Level crossing (b) Probability
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Figure 1: Comparison of the perturbative value with the exact one in the two generation neutrino

oscillation probability. In (a), the energy dependence of two eigenvalues is plotted. In (b), the

dotted and solid line show the values by the perturbative and numerical calculations, respectively.

the probability differs from that by numerical calculation. The perturbation around

the MSW resonance energy becomes a good approximation, if the baseline length is

shorter than the resonance length as seen from (2.15). However, we need to take

higher order terms of the perturbation into account, when the baseline length is

longer, namely when non-perturbative effects become important.

3. Extension of method to approximate oscillation probabilities

In this section, we consider the matter effects in three generation neutrino oscillation.

At first, we review that the 2-3 mixing angle θ23 and the CP phase δ can be separated

from matter effects in the oscillation probability [41]. This means that the matter effects

appear through the remained four parameters. Furthermore, these four parameters can be

separated to two set of parameters and each set is related to the phenomena in low and

high energy as

(θ12,∆m2
21) : Low Energy Phenomenon (3.1)

(θ13,∆m2
31) : High Energy Phenomenon. (3.2)

This separation means that the parameters for the solar neutrino and those for the atmo-

spheric neutrino are almost independent to each other. We propose the method deriving

the approximate formulas simply by using this feature.

3.1 Definition of Low and High Energy Regions

In this subsection, we define the low energy and the high energy Hamiltonians in the

small quantity limit when s13 or α approximate zero. Although these Hamiltonian have

been already introduced in our earlier papers [44, 45], we review them here, as they are

used in later section.

It is noted that H(t) satisfies the relation

H(t) = O23ΓH ′(t)Γ†OT
23 (3.3)
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where H ′ is given by

H ′ = O13O12diag(0,∆21,∆31)O
T
12O

T
13 + diag(a(t), 0, 0). (3.4)

This means that the 1-2 and 1-3 mixing angles are separated from the 2-3 mixing and

the CP phase, as explained in detail in Appendix A. In this Appendix A, we derive the

same result as that derived from this section from another point of view. Taking the limit

s13 → 0, the Hamiltonian reduces to the two generation Hamiltonian as

H` = lim
s13→0

H ′ (3.5)

= O12diag(0,∆21,∆31)O
T
12 + diag(a(t), 0, 0) (3.6)

=







∆21s
2
12 + a(t) ∆21s12c12 0

∆21s12c12 ∆21c
2
12 0

0 0 ∆31






(3.7)

This means that the third generation is now separated from the first and the second gen-

eration. As seen from this Hamiltonian (3.7), the components except for H`
ττ , depend only

on (θ12,∆21). We call H` the low energy Hamiltonian. On the other hand, taking the limit

α → 0, the Hamiltonian reduces to the two generation Hamiltonian as

Hh = lim
α→0

H ′ (3.8)

= O13diag(0, 0,∆31)O
T
13 + diag(a(t), 0, 0) (3.9)

=







∆31s
2
13 + a(t) 0 ∆31s13c13

0 0 0

∆31s13c13 0 ∆31c
2
13






. (3.10)

This means that the second generation is also separated from the two others. This Hamil-

tonian (3.10) is expressed by only the parameters (θ13,∆31). We call Hh high energy

Hamiltonian. Next, let us define the high and low energy regions described by Hh and

H`. We first calculate the MSW resonance energy because the MSW effect is the most

important in matter effects. In the case of L = 6000 km, which we use later, the average

matter potential is calculated as ρ = 3.91 g/cm3. By using this value, we obtain the high

energy MSW resonance as Eh = ∆m2
31/a ' 5 GeV and the low energy MSW resonance

as E` = ∆m2
21/a ' 0.2 GeV. From these results, we regard E ∼ 1GeV as the boundary

energy of low and high energy regions. Therefore, we define the high as E ≥ 1 GeV and

the low energy regions as E ≤ 1 GeV.

3.2 Order Counting of Amplitude on α and s13

In this subsection, we investigate how the amplitude S′, which is defined by the primed

Hamiltonian (3.4), depends on the two small parameters α and s13. Before, we have already

clarified some general features of S′ related to the order of α and s13, and the dependences

on s13 and α for particular amplitudes S′
µe and S′

τe have been given in our previous papers

[44, 45]. We investigate now the dependences on s13 and α for all amplitudes.

– 8 –
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At first, we represent the explicit form of the Hamiltonian, when the 2-3 mixing angle

and the CP phase are factored out as

H ′(t) = O13O12diag(0,∆21,∆31)O
T
12O

T
13 + diag(a(t), 0, 0) (3.11)

=







∆21c
2
13s

2
12 + ∆31s

2
13 + a(t) ∆21c13s12c12 −∆21c13s13s

2
12 + ∆31s13c13

∆21c13s12c12 ∆21c
2
12 −∆21s13s12c12

−∆21c13s13s
2
12 + ∆31s13c13 −∆21s13s12c12 ∆21s

2
13s

2
12 + ∆31c

2
13






.

(3.12)

The components of this Hamiltonian depend on α and s13 as

H ′(t) =







O(1) O(α) O(s13)

O(α) O(α) O(αs13)

O(s13) O(αs13) O(1)






. (3.13)

From this result, we can see that non-diagonal components are small compared to the di-

agonal components. We also understand that H ′
µτ is the smallest component and H ′

eµ,H ′
eτ

are the next smaller components. We should note the salient feature that the result of this

order counting holds in Hn for arbitrary n. Namely, we obtain

(H ′(t))n =







O(1) O(α) O(s13)

O(α) O(α2) O(αs13)

O(s13) O(αs13) O(1)






for n = 1, 2, · · · . (3.14)

According to this result, the order of the amplitude S′(t) for two small parameters α and

s13 is given by

S′(t) = T exp

{

−i

∫

H ′(t)dt

}

=







O(1) O(α) O(s13)

O(α) O(1) O(αs13)

O(s13) O(αs13) O(1)






. (3.15)

This result is almost the same as that of the original Hamiltonian. Furthermore, we

consider the general features derived from the original Hamiltonian. The θ13 dependence

of this Hamiltonian is described as

H ′ =







even even odd

even even odd

odd odd even






(3.16)

and this dependence does not change for (H ′)n, because

(H ′)n =







even even odd

even even odd

odd odd even






for n = 1, 2, · · · . (3.17)

Due to this result, the amplitude S′(t) has the same structure,

S′ = T exp

{

−i

∫

H ′(t)dt

}

=







even even odd

even even odd

odd odd even






. (3.18)

This is a general feature, which holds in arbitrary matter profile.
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3.3 Proposal of Simple Method

In the previous subsection, we have shown the general features (3.15) and (3.18) for the

amplitude S′(t) related to the almost vanishing parameters s13 and α. However, we cannot

calculate S′(t) by using only this features. In this subsection, we propose a generalized

method for the calculation. Let us consider if there is an approximation available for both

region, low and high energy. After expanding the amplitude S′ on the two small parameters

α and s13, we can arrange this as

S′ = O(1) + O(α) + O(s13) + O(α2) + O(αs13) + O(s2
13) + · · · (3.19)

=
(

O(1) + O(α) + O(α2) + · · ·
)

+
(

O(1) + O(s13) + O(s2
13) + · · ·

)

− O(1) + O(αs13) + O(α2s13) + O(αs2
13) + · · · (3.20)

= lim
s13→0

S′ + lim
α→0

S′ − lim
α,s13→0

S′ + O(αs13) + O(α2s13) + · · · (3.21)

= S` + Sh − Sd + O(αs13) + O(α2s13) + O(αs2
13) + · · · , (3.22)

where S`, Sh and Sd are defined by

S` = lim
s13→0

S′ = T exp

{

−i

∫

H`dt

}

(3.23)

Sh = lim
α→0

S′ = T exp

{

−i

∫

Hhdt

}

(3.24)

Sd = lim
α,s13→0

S′ = diag

(

exp

{

−i

∫

a(t)dt

}

, 1, e−i∆31L

)

, (3.25)

respectively. S` (Sh) corresponds to the amplitudes, which gives the main contribution in

low (high) energy. The term Sd counts twice, because contributions to this term comes

from both, low energy and high energy terms. Therefore, we subtract this contribution

and approximate the amplitude as

S′ ∼ S` + Sh − Sd (3.26)

ignoring higher order terms. Let us discuss this approximation, which is used to derive our

main result here.

In (3.19)-(3.22), the higher order terms in α and s13 are included in S` and Sh. The

reason for including the higher order terms is to take into account non-perturbative effects,

which become important in the low and high energy MSW resonance region as discussed in

section 2. On the other hand, we ignore those higher order terms, which are proportional

to both α and s13. For example, in the case of second order of the small parameters,

α and s13, we ignore only the mixed O(αs13) term among the three terms with second

order O(α2), O(s2
13) and O(αs13). This procedure is more appropriate than the usual

perturbation, because both non-perturbative effects on a small α in the low energy region

and on a small s13 in the high energy region can be included in our approximation. However,

as the derivation of the approximation (3.26) is not exact, we need to check this later

numerically. In the previous subsection, the parity of the matrix elements related to s13
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has been derived. The equations (3.15), (3.18) and (3.26) lead to the magnitude of the

correction for the amplitudes as

S′
µe = S`

µe + O(αs2
13) (3.27)

S′
τe = Sh

τe + O(αs13) (3.28)

S′
τµ = O(αs13) (3.29)

S′
ee = S`

ee + Sh
ee − Sd

ee + O(αs2
13) (3.30)

S′
µµ = S`

µµ + O(αs2
13) (3.31)

S′
ττ = Sh

ττ + O(αs2
13). (3.32)

If we ignore the higher order terms which are proportional to both, α and s13, in these

equations, we obtain approximate formulas by using the two generation amplitudes. The

main term for S′
µe, S

′
µµ is approximated by the low-energy amplitude as seen from (3.27)

and (3.31). On the other hand, the main terms for S′
τe and S′

ττ are approximated by the

high-energy amplitude as derived from (3.28) and (3.32), and these features come from eq.

(3.15). As seen from (3.27)-(3.32), these are expressed by only two generation amplitudes

and have the advantage of simplicity. The precision of the approximation depends on

the values of s13 and α. If the value of s13 is smaller than the upper bound derived by

the CHOOZ experiment, the precision of approximation becomes better. It should be

mentioned that the method described in this subsection does not need the assumption of

constant matter density.

Next, we show that the results using the approximate formulas (3.27)-(3.32) are in

excellent agreement with the numerical calculations. We choose the Preliminary Reference

Earth Model (PREM) as an earth matter density model and compare the amplitudes in all

channels calculated from our approximate formulas with the numerical calculation. Here,

∆m2
21 = 8.3 × 10−5 eV2,∆m2

31 = 2.0 × 10−3 eV2, sin2 2θ12 = 0.8 and sin θ13 = 0.23 are

chosen. Furthermore, we set the baseline length as L = 6000 km, a length, for which the

MSW effect becomes significant, and the energy region as 1 GeV ≤ E ≤ 20 GeV, for which

the MSW resonance energy appears.

We compare our formulas with the numerical calculation in figure 2. One can see in

the following that some remarkable features occur. At first, the four amplitudes |S′
µe|, |S′

ee|,
|S′

µµ| and |S′
ττ | coincide with the numerical calculation with a good precision. This happens,

because there is no first order correction of s13 from (3.27) and (3.30)-(3.32). Next, the

low-energy part of |S′
τe| differs from the numerical calculation only a little, which can be

understood from the eq. (3.28). Furthermore, our approximation for |S′
τµ| is not at all in

agreement with the numerical calculation. Although the value of this amplitude is exactly

zero in our approximation as seen from (3.29), the actual magnitude of this amplitude

attains 0.02 in the low energy region from figure 1. It is noted that this value is almost

the same as the value expected from the order counting O(αs13) ∼ 0.01. Next, we would

like to derive the approximate formulas of the oscillation probabilities from the amplitudes

obtained here, however, there is a problem. As seen from eqs. (A.32)-(A.49) in Appendix

A, we cannot obtain the approximate formulas for the CP dependence of the probabilities

P (νµ → νµ), P (νµ → ντ ) and P (ντ → ντ ). The reason is that the CP dependence in these
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Figure 2: Comparison of our approximate formulas with the numerical calculation. In these

figures the absolute value of the amplitudes in all channels is plotted in order to compare our

formulas with numerical calculation. The solid lines show the approximate probabilities calculated

from (3.27)–(3.32) and the dashed lines show the probabilities in the numerical calculation.

channels is directly proportional to S′
µτ . However there is a method to calculate these

indirectly by using the unitarity, even if we cannot directly obtain the amplitude S′
µτ , as

we will show in section 4.

3.4 Discussion

In this subsection, let us reconsider the method proposed in the previous subsection

in more detail. In (3.19)-(3.22), we ignored the terms of the order O(αs13) for the ampli-

tude S′. The reader probably wonder, why we ignore the terms of order O(αs13) for the

amplitude S′, but not for other quantities, like for example H ′ and P . Let us demonstrate

the case of using the physical quantity Q. Expanding Q on α and s13, we obtain

Q = Q` + Qh − Qd + O(αs13) + O(α2s13) + · · · (3.33)

by the same procedure as (3.19)-(3.22). If we neglect the higher order terms like O(αs13),

we can approximate Q as

Q ∼ Q` + Qh − Qd. (3.34)

As in the case of the approximated amplitude defined in the previous subsection, Q` =

Q`(θ12,∆21) is the main term in low-energy and Qh = Qh(θ13,∆31) is the main term in

high-energy. Qd is the double counting term. It is a method to be able to take into account

non-perturbative effects in both of the two MSW resonance regions. In principle, this

method is effective whatever we choose for the quantity Q, there is just a difference in

simplicity and the magnitude of error, as discussed in the following.

We consider the Hamiltonian H ′ as Q. Namely, H ′ can be approximated as

H ′ ∼ H` + Hh − Hd, (3.35)
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where the double counting term is given by

Hd = diag (a(t), 0,∆31) . (3.36)

There is a problem, because approximation became too simple: The form of the solution

for the amplitude is given by

S′ ∼ T exp

{

−i

∫

(H` + Hh − Hd)dt

}

, (3.37)

and we cannot simplify this amplitude without calculation of the commutator of H` and

Hh. Thus, the direct application of our method for the Hamiltonian needs other approxi-

mations to estimate the amplitude and this is not effective from the point of the simplicity.

Especially, the amplitudes cannot be calculated within the framework of the two generation

approximation although the precision of this approximation was good.

Next, let us consider the probability P as the quantity Q. In this case, we can approx-

imate as

P ∼ P ` + P h − P d, (3.38)

where P ` and P h are given by

P `(h) =

∣

∣

∣

∣

T exp

{

−i

∫

H`(h)dt

}∣

∣

∣

∣

2

, (3.39)

and P d is the identity matrix. As an example, we consider P (νe → νµ). The CP phase δ

dependence is given by

P (νe → νµ) = Aeµ cos δ + Beµ sin δ + Ceµ, (3.40)

where the coefficients Aeµ and Beµ determine the magnitude of the CP violation. On the

other hand, the CP violation becomes zero in the limit, α → 0 or s13 → 0, as seen from

Aeµ = O(αs13), Beµ = O(αs13). (3.41)

Namely, we obtain

A`
eµ = Ah

eµ = Ad
eµ = 0, B`

eµ = Bh
eµ = Bd

eµ = 0 (3.42)

and therefore we cannot calculate quantities like the CP violation, because it is the effects

of three generations in this approximation. This result holds for all channels.

To summarize this subsection, if we choose the Hamiltonian H ′ as Q, the precision

of approximation is good, but the calculation is not so simple compared to the exact

calculation. If we choose the probability P as Q, we cannot calculate three generation

effects like CP violation. On the other hand, if we choose the amplitude S′ as Q, we

can calculate the three generation effects like CP violation within the framework of two

generation approximation.
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4. Approximate formulas for oscillation probabilities

In this section, we calculate the CP dependent terms from νµ to νµ and so on, not de-

termined by the method in the previous section, by using the unitarity. After that, we

derive the approximate formulas of the oscillation probabilities P (να → νβ) in arbitrary

matter profile without using S′
µτ directly. Namely, we derive the approximate formulas in

all channels by our new method.

4.1 Unitarity Relation

We cannot calculate the amplitude S′
µτ in the method introduced in the previous

section. The reason is that the amplitude S′
µτ is a very small quantity, which has an order

of O(αs13). As seen from (A.32)-(A.49) in Appendix A, it seems that the approximate

formulas, including CP violation, of three channels, P (νµ → νµ), P (ντ → ντ ) and P (νµ →
ντ ) cannot be derived without directly calculating the amplitude S′

µτ . However in this

subsection we show, that we can derive these probabilities without directly calculating this

amplitude, if we assume the two natural conditions,

s23 ' c23, (4.1)

S′
αβ ' S′

βα. (4.2)

The first condition is supported by the best fit value of atmospheric neutrino experiments

[12] and the second condition holds in one-dimensional models of the earth matter density

like PREM or ak-135f. Accordingly, the error due to the difference between these conditions

and the real situations is considered to be relatively small. We perform the analysis under

these two conditions in the following.

At first, we obtain

Bµµ = −2Im[(S′
µµc2

23 + S′
ττs

2
23)

∗(S′
τµ − S′

µτ )]c23s23 = 0 (4.3)

from (A.34) and (4.2) in the case of the symmetric matter density. In the same way, we

obtain

Bττ = 2Im[(S′
µµs2

23 + S′
ττc

2
23)

∗(S′
τµ − S′

µτ )]c23s23 = 0 (4.4)

from (A.40) and (4.2). Furthermore, in the case of the symmetric matter density and the

maximal 2-3 mixing angle 45◦, we also obtain

Aµτ = −2Re[(S′
µµ − S′

ττ )
∗(S′

τµc2
23 − S′

µτs2
23)]c23s23 = 0 (4.5)

from (A.45) and (4.2). Let us here consider now, how the oscillation probabilities are

derived, which are related to the amplitude S′
µτ but have not been determined in the

previous section,. At first, in the probability,

P (νµ → νµ) = Aµµ cos δ + Bµµ sin δ + Cµµ + Dµµ cos 2δ + Eµµ sin 2δ, (4.6)

the coefficient proportional to cos δ can be calculated as

Aµµ = −Aµe − Aµτ ' −Aeµ ' −2Re[S`∗
µeS

h
τe]s23c23 (4.7)
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from (4.5) and the unitarity relation. Next, let us turn to the probability P (ντ → ντ ). In

the probability,

P (ντ → ντ ) = Aττ cos δ + Bττ sin δ + Cττ + Dττ cos 2δ + Eττ sin 2δ, (4.8)

the coefficient of cos δ can be calculated as

Aττ = −Aτe − Aτµ ' −Aeτ ' 2Re[S`∗
µeS

h
τe]s23c23 (4.9)

from (4.5) and the unitarity relation.

Finally, let us calculate the probability P (νµ → ντ ). In the probability,

P (νµ → ντ ) = Aµτ cos δ + Bµτ sin δ + Cµτ + Dµτ cos 2δ + Eµτ sin 2δ, (4.10)

the coefficient of sin δ becomes

Bµτ = −Bµe − Bµµ ' Beµ ' 2Im[S`∗
µeS

h
τe]s23c23 (4.11)

from (4.3) and the unitarity relation. We can derive the probability up to the second

order of two small parameters by using the unitarity relation although we cannot directly

calculate S′
µτ in the previous method. In addition, the coefficients of sin 2δ and cos 2δ, D

and E, have an order of

D = O(α2s2
13), E = O(α2s2

13) (4.12)

in these three channels as derived from (A.36), (A.37), (A.42), (A.43), (A.48) and (A.49)

and are expected to be small. Actually, these coefficients have the second order of S′
µτ ,

and the values are about (0.02)2 ' 0.0004 from figure 1 in the high energy region related

with long baseline experiments. So we ignore them in the following section.

4.2 Approximate Formulas in All Channels

In this subsection, we present the approximate formulas which are useful in arbitrary

matter density profile. Ignoring the higher order terms of α and s13 than the second order,

we can present the oscillation probabilities for all channels with the amplitudes calculated

in two generations.

At first, let us derive the approximate formulas for P (νe → νµ) and P (νe → ντ ). The

approximate formula for P (νe → νµ) has already been derived in our previous paper [44].

We only have to replace the amplitudes S′
µe and S′

τe in three generations into S`
µe and Sh

τe

in two generations. From (A.24)-(A.31) and (3.27)-(3.28), we obtain

P (νe → νµ) = Aeµ cos δ + Beµ sin δ + Ceµ (4.13)

Aeµ ' 2Re[S`∗
µeS

h
τe]c23s23, (4.14)

Beµ ' −2Im[S`∗
µeS

h
τe]c23s23, (4.15)

Ceµ ' |S`
µe|2c2

23 + |Sh
τe|2s2

23, (4.16)

P (νe → ντ ) = Aeτ cos δ + Beτ sin δ + Ceτ (4.17)

Aeτ ' −2Re[S`∗
µeS

h
τe]c23s23, (4.18)

Beτ ' 2Im[S`∗
µeS

h
τe]c23s23, (4.19)

Ceτ ' |S`
µe|2s2

23 + |Sh
τe|2c2

23, . (4.20)
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Eqs. (4.13)-(4.16) are the same as those derived in our previous paper [44]. Next, let us

derive the approximate formulas for P (νe → νe). Using (3.30) directly, we obtain

P (νe → νe) = Cee = |S′
ee|2 (4.21)

' |S`
ee + Sh

ee − Sd
ee|2. (4.22)

On the other hand, we obtain

P (νe → νe) = Cee = 1 − Ceµ − Ceτ (4.23)

' 1 − |S`
µe|2 − |Sh

τe|2, (4.24)

by using the unitarity relation. This is a different approximate formula than (4.22). Thus,

there are two kinds of expressions (4.22) and (4.24) for P (νe → νe). We checked numerically

that the expression (4.24) has a better precision than the expression (4.22). Furthermore,

the expression (4.24) easily reproduces the approximate formula derived with double ex-

pansion up to the second order of two small parameters in ref. [32] (second order formula).

So we use the expression (4.24) in the following.

Next, let us derive the approximate formula for P (νµ → ντ ). At first we calculate the

terms independent of the CP phase in this calculation. We can approximate

Cµτ = |S′
µτ |2s4

23 + |S′
τµ|2c4

23 + |S′
µµ − S′

ττ |2c2
23s

2
23 ' |S`

µµ − Sh
ττ |2c2

23s
2
23 (4.25)

from (A.47) and (3.31)-(3.32), where we ignore the terms proportional to |S′
µτ |2 = O(α2s2

13).

This leads to the approximated probability as

P (νµ → ντ ) = Bµτ sin δ + Cµτ (4.26)

Bµτ ' 2Im[S`∗
µeS

h
τe]c23s23, (4.27)

Cµτ ' |S`
µµ − Sh

ττ |2c2
23s

2
23. (4.28)

Next, let us derive the approximate formulas for P (νµ → νµ) and P (ντ → ντ ). From (A.35)

and (3.31)-(3.32), we obtain

Cµµ = |S′
µµc2

23 + S′
ττs

2
23|2 + (|S′

µτ |2 + |S′
τµ|2)c2

23s
2
23 (4.29)

' |S`
µµc2

23 + Sh
ττs

2
23|2, (4.30)

where we neglect the terms proportional to |S′
µτ |2 = O(α2s2

13). On the other hand, we

obtain another expression by using the unitarity relation as

Cµµ = 1 − Cµe − Cµτ (4.31)

' 1 − |S`
µe|2c2

23 − |Sh
τe|2s2

23 − |S`
µµ − Sh

ττ |2c2
23s

2
23 (4.32)

This seems to be different from (4.30) at a glance, but we confirmed that (4.30) and

(4.32) are the same expression by using the unitarity relation. In the following, we use the

expression (4.32) for the reason that this easily reproduces the second order formula and

we can check the unitarity. In the same way, Cττ is given by

Cττ = 1 − Ceτ − Cµτ ' 1 − |S`
µe|2s2

23 − |Sh
τe|2c2

23 − |S`
µµ − Sh

ττ |2c2
23s

2
23 (4.33)
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Figure 3: Comparison of our approximate formulas with the numerical calculation. In these

figures P (να → νβ) is plotted in order to compare our approximate formulas with the numerical

calculation. The solid lines show the approximate probabilities and the dashed lines show the

numerical calculation of probabilities.

from the unitarity relation. From the result obtained in subsection 4.1, the approximate

formulas for P (νµ → νµ) and P (ντ → ντ ) are given by

P (νµ → νµ) = Aµµ cos δ + Cµµ (4.34)

Aµµ ' −2Re[S`∗
µeS

h
τe]c23s23, (4.35)

Cµµ ' 1 − |S`
µe|2c2

23 − |Sh
τe|2s2

23 − |S`
µµ − Sh

ττ |2c2
23s

2
23 (4.36)

P (ντ → ντ ) = Aττ cos δ + Cττ (4.37)

Aττ ' 2Re[S`∗
µeS

h
τe]c23s23, (4.38)

Cττ ' 1 − |S`
µe|2s2

23 − |Sh
τe|2c2

23 − |S`
µµ − Sh

ττ |2c2
23s

2
23. (4.39)

These results are one of the main results of this paper. In all channels, we can present

the probabilities including the CP violation by using the amplitudes calculated in two

generations. It is noted that the CP violating terms due to the existence of three generations

can be calculated from the two generation amplitudes.

Next, let us compare the approximate formulas (4.13)-(4.20), (4.24), (4.26)-(4.28) and

(4.34)-(4.39) with the numerical calculations. We take the PREM (Preliminary Reference

Earth Model) as the earth matter density profile and compare the approximated values of

all probabilities with those calculated numerically. We use the same parameters as those

used in fig. 1 and sin 2θ23 = 1, δ = 90◦. We set the baseline length, L = 6000 km and the

energy region, 1 GeV ≤ E ≤ 20 GeV, to include the high energy MSW resonance.

We compare our approximate formulas with the numerical calculation in figure 3.

One can see some features from this figure. The approximated value of probabilities for

P (νe → νµ), P (νe → ντ ) and P (νe → νe) coincide to the numerical values very well, on

the other hand, the remaining three channels of probabilities P (νµ → ντ ), P (νµ → νµ)
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and P (ντ → ντ ) show a small difference between the approximate and the numerical

value. However, the difference is not so large as in figure 2 and as a first step the result is

sufficiently accurate.

5. Comparison of our results with second order formulas

In this section, we concretely calculate the amplitudes by using the approximate formu-

las derived in the previous section for the case of constant matter and show that simple

approximate formulas can be obtained. Finally, we demonstrate that the approximate for-

mula derived with double expansion up to the second order of the two small parameters

(second order formulas) are largely different from the exact values in the MSW resonance

region under the condition that the baseline length is longer than the oscillation length.

5.1 Approximate Formulas for Amplitudes

In the previous section, we have given a method for approximation of the probabilities

in three generations by amplitudes in two generations. In this subsection, we use the

constant matter density profile in order to compare our method with other method and

investigate the non-perturbative effects. As seen from (4.13)-(4.20), (4.24), (4.26)-(4.28)

and (4.34)-(4.39), we only have to calculate four kinds of amplitudes, namely S`
µe, S

`
µµ, Sh

τe

and Sh
ττ .

The low-energy approximate formulas are obtained by taking the limit s13 = 0 and

from

H` = O12diag(0,∆21,∆31)O
T
12 + diag(a, 0, 0) (5.1)

= O`
12diag(λ`

1, λ
`
2,∆31)(O

`
12)

T . (5.2)

The effective masses λ`
i(i = 1, 2) and the effective mixing angle θ`

12 are determined by the

diagonalization of (5.1) to (5.2). If we define the mass squared difference in matter as

∆`
21 = λ`

2 − λ`
1, we obtain the relation

∆`
21

∆21
=

sin 2θ12

sin 2θ`
12

=

√

(

cos 2θ12 −
a

∆21

)2

+ sin2 2θ12. (5.3)

Therefore, the amplitude is calculated as

S`
µe = −i sin 2θ`

12 sin
∆`

21L

2
exp

(

−i
∆21 + a

2
L

)

(5.4)

S`
µµ =

(

cos
∆`

21L

2
− i cos 2θ`

12 sin
∆`

21L

2

)

exp

(

−i
∆21 + a

2
L

)

(5.5)

by substituting (5.2) into (3.23). On the other hand, the approximate formulas in high

energy are obtained by taking the limit α = 0 and we get

Hh = O13diag(0, 0,∆31)O
T
13 + diag(a, 0, 0) (5.6)

= Oh
13diag(λh

1 , 0, λh
3 )(Oh

13)
T . (5.7)
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The effective masses λh
i (i = 1, 3) and the effective mixing angle θh

13 are determined by the

diagonalization of (5.6) to (5.7). If we define the mass squared difference in matter as

∆h
31 = λh

3 − λh
1 , we obtain the relation

∆h
31

∆31
=

sin 2θ13

sin 2θh
13

=

√

(

cos 2θ13 −
a

∆31

)2

+ sin2 2θ13. (5.8)

Accordingly, the amplitude can be calculated by substituting (5.7) into (3.24) as

Sh
τe = −i sin 2θh

13 sin
∆h

31L

2
exp

(

−i
∆31 + a

2
L

)

(5.9)

Sh
ττ =

(

cos
∆h

31L

2
− i cos 2θh

13 sin
∆h

31L

2

)

exp

(

−i
∆31 + a

2
L

)

. (5.10)

As seen from (5.4) and (5.9), S`
µe and Sh

τe have simple forms, but the expressions of S`
µµ

and Sh
ττ are more complex than (5.5) and (5.10).

5.2 Approximate Formulas for Probabilities

In this subsection, we derive the approximate formulas of the oscillation probabilities

in constant matter by using the result of the previous section.

At first, let us consider the case of including electron neutrino in the initial or final

state. In this case, the probability for any channel can be calculated almost in the same

way. The probability P (νe → νe) is obtained by substituting (5.4) and (5.9) into (4.24) as

P (νe → νe) = 1 − sin2 2θ`
12 sin2 ∆`

21L

2
− sin2 2θh

13 sin2 ∆h
31L

2
. (5.11)

The probability P (νe → νµ) is obtained by substituting (5.4) and (5.9) into (4.14)-(4.16)

as

P (νe → νµ) = Aeµ cos δ + Beµ sin δ + Ceµ (5.12)

Aeµ ' sin 2θ`
12 sin 2θ23 sin 2θh

13 sin
∆`

21L

2
sin

∆h
31L

2
cos

∆32L

2
(5.13)

Beµ ' sin 2θ`
12 sin 2θ23 sin 2θh

13 sin
∆`

21L

2
sin

∆h
31L

2
sin

∆32L

2
(5.14)

Ceµ ' c2
23 sin2 2θ`

12 sin2 ∆`
21L

2
+ s2

23 sin2 2θh
13 sin2 ∆h

31L

2
. (5.15)

The remaining probability P (νe → ντ ) can be calculated from the unitarity relation. Next,

let us calculate the probabilities for the case, that not all electron neutrinos in the initial and

final state are included. Also in this case, the probability for any channel can be calculated

almost in the same way. Accordingly, as an example, we calculate the probability for muon

neutrino to tau neutrino,

P (νµ → ντ ) = Bµτ sin δ + Cµτ (5.16)

Bµτ ' sin 2θ`
12 sin 2θ23 sin 2θh

13 sin
∆`

21L

2
sin

∆h
31L

2
sin

∆32L

2
(5.17)

Cµτ ' |S`
µµ − Sh

ττ |2s2
23c

2
23. (5.18)
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At first, we use the relations, cos 2θ`
12 = 2cos2 θ`

12 − 1 and cos 2θh
13 = 1 − 2 sin2 θh

13, and we

rewrite S`
µµ and Sh

ττ as

S`
µµ '

[

exp

(

i
∆`

21

2
L

)

− 2i cos2 θ`
12 sin

∆`
21L

2

]

exp

(

−i
∆21 + a

2
L

)

(5.19)

Sh
ττ '

[

exp

(

−i
∆h

31L

2

)

+ 2i sin2 θh
13 sin

∆h
31L

2

]

exp

(

−i
∆31 + a

2
L

)

. (5.20)

Then, arranging Cµτ in the order of the effective mixing angles cos θ`
12 and sin θh

13, we

obtain

C1
µτ = sin2 2θ23 sin2 (∆`

21 + ∆h
31 + ∆32)L

4
(5.21)

C2a
µτ = −2 sin2 2θ23 cos2 θ`

12 sin
(∆`

21 + ∆h
31 + ∆32)L

4
cos

(∆`
21 − ∆h

31 − ∆32)L

4
sin

∆`
21L

2
(5.22)

C2b
µτ = −2 sin2 2θ23 sin2 θh

13 sin
(∆`

21 + ∆h
31 + ∆32)L

4
cos

(∆`
21 − ∆h

31 + ∆32)L

4
sin

∆h
31L

2
(5.23)

C3
µτ = sin2 2θ23 cos4 θ`

12 sin2 ∆`
21L

2
+ sin2 2θ23 sin4 θh

13 sin2 ∆h
31L

2

+ 2 sin2 2θ23 cos2 θ`
12 sin2 θh

13 sin
∆`

21L

2
sin

∆h
31L

2
cos

∆32L

2
. (5.24)

As we show in the following section, the reason of arranging the terms like this is, because

the second order formulas can be easily derived. In order to derive the second order

formulas, it is sufficient to use C1
µτ , C2a

µτ and C2b
µτ . We can also calculate the other channels

P (νµ → νµ) and P (ντ → ντ ) in the same way. In a recent study, it was found that the

channels P (νµ → νµ) and P (ντ → ντ ) are largely affected by the earth matter in the long

baseline [47 – 49].

We can see from these expressions that the approximate formulas are rather complex

for the case not including electron neutrino in the initial or final state. We also understand

from these formulas how matter affects the probabilities. Thus, the formulas are expected

to be useful for studying matter effects.

5.3 Large Non-perturbative Effects of small α and s13

In this subsection, we compare the approximate formulas obtained in the previous

subsection with the second order formulas numerically and it is shown that the latter have

a large difference from the numerical value in the MSW resonance region.

The second order formulas are approximated by the main terms of the expansion and

are widely used by many authors for their simplicity. In refs. [30, 31], the formula for

P (νe → νµ) has been derived and later on all probabilities were presented in ref. [32].

As examples, the probabilities, P (νe → νµ) and P (νµ → ντ ), are taken. For the other

channels of probabilities, similar expressions have been obtained. In all channels similar
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results were obtained from comparison with numerical calculations. The second order

formula for P (νe → νµ) is given by

P (νe → νµ) = Aeµ cos δ + Beµ sin δ + Ceµ, (5.25)

Aeµ ' αs13 sin 2θ12 sin 2θ23
2∆2

31

a(∆31 − a)
sin

aL

2
sin

(∆31 − a)L

2
cos

∆32L

2
(5.26)

Beµ ' αs13 sin 2θ12 sin 2θ23
2∆2

31

a(∆31 − a)
sin

aL

2
sin

(∆31 − a)L

2
sin

∆32L

2
(5.27)

Ceµ ' α2c2
23 sin2 2θ12

∆2
31

a2
sin2 aL

2
+ s2

13s
2
23

4∆2
31

(∆31 − a)2
sin2 (∆31 − a)L

2
. (5.28)

Comparing our approximate formulas (5.13)–(5.15) with the second order formulas (5.26)–

(5.28), each term corresponds one by one. Actually, the second order formulas (5.26)–(5.28)

are derived by expanding our approximate formulas (5.13)-(5.15) up to the second order

in α and s13 [44]. Next, the second order formula for P (νµ → ντ ) which has been already

derived in ref. [32] is

P (νµ → ντ ) = Aµτ cos δ + Bµτ sin δ + Cµτ (5.29)

Aµτ ' αs13 sin2 2θ23 sin 2θ12 cos 2θ23
2∆31

∆31 − a
sin

∆31L

2

×
[

a

∆31
sin

∆31L

2
− ∆31

a
sin

aL

2
cos

(∆31 − a)L

2

]

(5.30)

Bµτ ' αs13 sin 2θ12 sin 2θ23
2∆2

31

a(∆31 − a)
sin

aL

2
sin

(∆31 − a)L

2
sin

∆32L

2
, (5.31)

and Cµτ is given by

Cµτ ' sin2 2θ23 sin2 ∆31L

2

− α sin2 2θ23 cos2 θ12

(

∆31L

2

)

sin ∆31L + α2 sin2 2θ23 cos4 θ12

(

∆31L

2

)2

cos ∆31L

− α2 sin2 2θ23 sin2 2θ12

(

∆31

2a

)

×
[

sin
∆31L

2
cos

(∆31 − a)L

2
sin

aL

2

(

∆31

a

)

− ∆31L

4
sin(∆31L)

]

− s2
13 sin2 2θ23

2∆31

∆31 − a

×
[

sin
∆31L

2
cos

aL

2
sin

(∆31 − a)L

2

(

∆31

∆31 − a

)

− aL

4
sin(∆31L)

]

. (5.32)

In the next section we show that this formula (5.32) can be also derived from our formulas

(5.21)-(5.24). It is noted that the second order formula (5.32) for Cµτ is rather complex.

Furthermore comparing our approximate formula (5.17)-(5.24) with the second order for-

mula (5.30)-(5.32), we see that Aµτ is not included in our formula. The reason is, that

Aµτ = 0 in the case of maximal mixing angle sin 2θ23 = 1 and there is no way of calculating

this by the method described in this paper. If we consider cos 2θ23 as a small parameter like
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α and s13, this Aµτ has the magnitude of O(αs13 cos 2θ23). Therefore, Aµτ is proportional

to the third order of small parameters and is expected to be neglectable. This means that

our formula is not largely affected by the error due to this term, which cannot be derived

from our method. However, as this error affects the precision measurement of sin θ23 by the

atmospheric neutrino experiments in future, the improvement of this point is important

future work. The formulas for the other channels are given in ref. [32]. The second order

formulas are effective under the following two conditions.

The first one is for the neutrino energy and is given by

E À 0.45 GeV

(

∆m2
21

10−4 eV2

)(

3 g/cm3

ρ

)

. (5.33)

The second one is for the baseline length and is given by

L ¿ 8000 km

(

E

GeV

)(

10−4 eV2

∆m2
21

)

. (5.34)

These conditions come from the utilization of perturbative expansion on the two small

parameters. The detailed discussion are given in [31]. These approximate formulas are

used for the purpose of understanding of the results obtained by numerical calculations

[50, 51]. However, as shown in the next figure, these formulas have large difference from

the true value in the MSW resonance region, which is considered to be the most important

region.

Next, let us compare our formulas (5.12)-(5.23) with the second order formulas (5.25)-

(5.32) in all channels by numerical calculation. In order to see the magnitude of the

error, we also compare two kinds of approximate formulas with the exact values. We

set the baseline length as L = 6000 km, where the MSW effect becomes large, and the

energy region as 1 GeV ≤ E ≤ 20 GeV, where the MSW resonance energy is included.

Furthermore, the second order formulas are derived only in the case of constant matter, so

we choose the average density ρ = 3.91 g/cm3 of the earth calculated by the PREM. Note

that two conditions (5.33) and (5.34) are satisfied in these region.

We compare the probabilities calculated by our approximate formulas in all channels

with those by the second order formulas in addition to numerical calculation in figure 4.

One can see the following points from this figure. The second order formulas show large

differences from the numerical values around 5 GeV, where the high energy MSW resonance

occurs. In other energy regions they are in good coincidence. The value of P (νe → νe) has

the largest difference, the probabilities P (νe → νµ) and P (νe → ντ ) have the next largest

difference, the values of P (νµ → νµ) and P (ντ → ντ ) have also significantly large difference,

but only the probability P (νµ → ντ ) has a small difference. In addition, these figures show

that the difference between the second order formulas and the numerical calculation exists

even in the two applicable regions (5.33) and (5.34). Although we do not show a figure, the

difference between our approximate formulas (5.12)-(5.23) and the second order formulas

(5.25)-(5.32) become more clear out of the two applicable regions (5.33) and (5.34). The

reason is that our approximate formulas (5.12)-(5.23) are applicable even for the case that

the condition (5.33) or (5.34) for energy and baseline length does not hold, as confirmed
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Figure 4: Comparison of our approximate formulas with the second order formulas and in addition

with the numerical calculations. The solid, dashed and dotted lines show the probabilities in our

approximate formulas, those in the numerical calculation and those in the second order formulas,

respectively.

from the comparison with the exact numerical calculation. However, the second order

formulas are good approximations, when the neutrino energy is not near the resonance

energy, even if the baseline length is long.

6. Non-perturbative effects of small parameters ∆m2
21/∆m2

31 and sin θ13

In this section, we investigate the reason for the difference between the second order for-

mula,which contains the approximation with double expansion up to the second order of

two small parameters, and the numerical calculation around the MSW resonance region as

explained in the previous subsection.

We discuss the non-perturbative effects of small mixing angle more detailed than in

section 2.

6.1 Derivation of the Second Order Formulas

In this subsection, we investigate how the second order formulas are approximated

expanding on α = ∆m2
21/∆m2

31 In the previous paper, we have discussed the probability

P (νe → νµ), so we calculate the second order formula for P (νµ → ντ ) here. The method

of calculation is basically the same but the calculation itself becomes slightly complex,

because we need to calculate the effective mass and the effective mixing angle up to the

second order of α and s13 in the case of P (νµ → ντ ). In this point, the calculation is not

straightforward compared with that of P (νe → νµ) but the method of approximation is

the same. Note that C1
µτ in (5.21) does not include the effective mixing angle. For this

reason, it is sufficient to expand the effective mixing angle up to the zeroth order, but we

need to expand the effective mass up to the second order to calculate the probability up
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to the second order in α and s13, The effective mixing angle is expanded up to the zeroth

order as

cos θ`
12 ' 1

2
sin 2θ`

12 ' α sin 2θ12
∆31

2a
(6.1)

sin θh
13 ' 1

2
sin 2θh

13 ' s13
∆31

∆31 − a
(6.2)

and the effective mass is expanded up to the second order as

∆`
21 ' a − α cos 2θ12∆31 + α2 sin2 2θ12

∆2
31

2a
(6.3)

∆h
31 ' ∆31 − a + s2

13

2∆31a

∆31 − a
. (6.4)

Here, we should emphasize the following points. Eqs. (6.1) and (6.3) obtained by the

expansion in α diverge in the vacuum limit a → 0 and eqs. (6.2) and (6.4) obtained by the

expansion in s13 diverge in the high energy MSW resonance limit a → ∆31. As shown in

the following, these divergences cancel and the probability has a finite value. Expanding

C1
µτ in (5.21) up to the second order, we obtain

C1
µτ ' C1a

µτ + C1b
µτ + C1c

µτ + C1d
µτ + C1e

µτ (6.5)

C1a
µτ = sin2 2θ23 sin2 ∆31L

2
(6.6)

C1b
µτ = −α sin2 2θ23 cos2 θ12

(

∆31L

2

)

sin ∆31L (6.7)

C1c
µτ = α2 sin2 2θ23 cos4 θ12

(

∆31L

2

)2

cos ∆31L (6.8)

C1d
µτ = α2 sin2 2θ23 sin2 2θ12

(

∆2
31L

8a

)

sin ∆31L (6.9)

C1e
µτ = s2

13 sin2 2θ23

(

a∆31

∆31 − a

L

2

)

sin ∆31L. (6.10)

We also expand C2a
µτ in (5.22) and C2b

µτ in (5.23) as

C2a
µτ ' −2α2 sin2 2θ23 sin2 2θ12

(

∆31

2a

)2

sin
∆31L

2
cos

(∆31 − a)L

2
sin

aL

2
(6.11)

C2b
µτ ' −2s2

13 sin2 2θ23

(

∆31

∆31 − a

)2

sin
∆31L

2
cos

aL

2
sin

(∆31 − a)L

2
. (6.12)

Finally, we obtain (5.32) arranging these result order by order.

Here, let us consider the applicable region of the second order formulas. C1d
µτ diverges

in the limit a → 0 and C1e
µτ diverges in the limit a → ∆31. C2a

µτ also diverges in the limit

a → 0 and C2b
µτ diverges in the limit a → ∆31. The divergences in a → 0 and in a → ∆31

come from the expansion of the effective masses (6.3) and (6.4) respectively. It seems that

the second order formulas do not reduce to those in vacuum due to the divergence in a → 0
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and furthermore do not reduce to those in the high energy MSW resonance point due to

the divergence in a → ∆31. However, when we consider the pair

C1d
µτ + C2a

µτ = −α2 sin2 2θ23 sin2 2θ12
∆31

2a

×
[

sin
∆31L

2
cos

(∆31 − a)L

2
sin

aL

2

(

∆31

a

)

− ∆31L

4
sin(∆31L)

]

, (6.13)

the divergence in a → 0 cancel and the value converges. The obtained finite value is given

by

lim
a→0

(C1d
µτ + C2a

µτ ) = −α2 sin2 2θ23 sin2 2θ12
1

2

(

∆31L

2

)2

sin2 ∆31L

2
. (6.14)

Before we expand, C1
µτ and C2

µτ have finite values in the limit a → 0 and a → ∆31.

However, the divergence appears in expansion of α and s13. The cancellation of these

divergences occurs between C1d
µτ and C2a

µτ . This means that the cancellation occurs between

the different terms and result in finite values, respectively, at first, which is an interesting

result. Considering the pair as

C1e
µτ + C2b

µτ = −s2
13 sin2 2θ23

2∆31

∆31 − a

×
[

sin
∆31L

2
cos

aL

2
sin

(∆31 − a)L

2

(

∆31

∆31 − a

)

− aL

4
sin(∆31L)

]

, (6.15)

the divergence in the limit a → ∆31 cancels and the value converges. The finite value is

given by

lim
a→∆31

(C1e
µτ + C2b

µτ ) = s2
13 sin2 2θ23

(

∆31L

2

)[

(∆31L) sin2 ∆31L

2
− sin(∆31L)

]

. (6.16)

The cancellation of these divergences occurs between the different terms C1e
µτ and C2b

µτ ,

which is also a remarkable result.

We have shown that the second order formulas have finite values in the limit a → 0 and

a → ∆31, but it is not always the same as that in the numerical calculation. Actually, the

difference in fig. 4 in the limit a → ∆31, shows that the second order formulas have finite

values but they are not in accordance with those in the numerical calculation. In order to

study this, we compare the three quantities, the numerical calculation, our formulas and

the second order formulas. We can learn the differences mainly in the vacuum limit a → 0

and the high energy MSW resonance limit a → ∆31 from the comparison.

At first, let us consider the vacuum limit a → 0. Furthermore, to simplify the discus-

sion, we consider the case of s13 → 0. The second order formulas in the limits a → 0 and

s13 → 0 are given by

lim
a,s13→0

C(double)
µτ = sin2 2θ23 sin2 ∆31L

2
− α sin2 2θ23 cos2 θ12

(

∆31L

2

)

sin ∆31L

+ α2 sin2 2θ23 cos4 θ12

(

∆31L

2

)2

cos ∆31L

− α2 sin2 2θ23 sin2 2θ12
1

2

(

∆31L

2

)2

sin2 ∆31L

2
. (6.17)
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Next, taking the limit a → 0 and s13 → 0 in our formulas, we obtain

lim
a,s13→0

C(exact)
µτ = sin2 2θ23 sin2 ∆31L

2

− 2 sin2 2θ23 cos2 θ12 sin
∆31L

2
cos

(∆21 − ∆31)L

2
sin

∆21L

2
. (6.18)

Expanding the oscillating part of (6.18) in our formula, it leads to (6.17) obtained from

the second order formula. The condition for the expansion on the oscillating part for

sufficiently good approximation is

L <
2

∆21
. (6.19)

Next, let us consider the high energy MSW resonance limit a → ∆31. In order to

simplify the discussion, we take the high energy MSW resonance limit a → ∆31 under the

condition α → 0. In the high energy MSW resonance limit of the second order formula,

we obtain

lim
a→∆31,α→0

C(double)
µτ = sin2 2θ23 sin2 ∆31L

2

+ s2
13 sin2 2θ23

(

∆31L

2

) [

(∆31L) sin2 ∆31L

2
− sin(∆31L)

]

. (6.20)

Next, taking the limit a → ∆31 and α → 0 in our formulas, we obtain

lim
a→∆31,α→0

C(exact)
µτ = sin2 2θ23 sin2 (1 + s13)∆31L

2
(6.21)

− sin2 2θ23(1 − s2
13) sin

(1 + s13)∆31L

2
cos

(1 − s13)∆31L

4
sin(s13∆31L).

By expanding the oscillating part obtained from our formula (6.22), it is shown that this

coincides with that from the second order formula (6.20). The condition for the expansion

of the oscillating part for a sufficient approximation is given by

L <
2

s13∆31
=

2

s13a
. (6.22)

If the baseline length is shorter than that obtained from above condition, the second or-

der formula becomes a good approximation. We obtain the following results about the

perturbative expansion on the small parameters α and s13.

1. The perturbative expansion in α actually corresponds to the expansion in ∆21/a.

This constrains the applicable energy for the approximate formulas. If we expand in

the parameter ∆21/a, the effective mass ∆`
21 and the effective mixing angle sin 2θ`

12

diverge in the vacuum limit a → 0. However, these divergences cancel out each other

in the calculation of the oscillation probability. Thus, the probability has a finite

value, but the value largely differs from the numerical calculation in low-energy. The

magnitude of this difference becomes large and serious in the case of small mixing

angles and in low-energy long baseline experiments.
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2. If we expand in the small mixing angle s13, the effective mass ∆h
31 and the effective

mixing angle sin 2θh
13 diverge in the MSW resonance energy limit a → ∆31. However,

these divergences also cancel each other out in the calculation of the oscillation prob-

ability. Thus, the probability has a finite value, but the value largely differs from the

numerical calculation in the high-energy MSW resonance region. This means that

the second order formulas cannot be used in the high energy MSW resonance region.

In two generations, we can calculate the oscillation probabilities exactly by solving the

second order equation. So, we do not need the perturbative expansion. On the other hand,

the construction of the approximate formulas applicable to arbitrary matter density profile

is very difficult in three generations. Therefore, we need to expand on the small parameters

α and s13.

6.2 Discussion

We have shown that the double expansion formulas up to the second order in the two

small parameters α and s13 does not give a good approximation in the MSW resonance

region. This is because the coefficients of the small parameters have large values in the

MSW resonance region. In this subsection, let us discuss some methods proposed up to

present to solve this problem. The Hamiltonian H ′ is written by four parameters. The

two parameters (∆m2
21, θ12) control the physics mainly in the low-energy region and the

other two parameters (∆m2
31, θ13) control the physics mainly in the high-energy region. In

other words, the magnitude of α determines low-energy phenomena and the magnitude

of s13 determines high-energy phenomena. Both of these parameters are very small but

the energy region, where the expansion converges, is different. This means that we need

to treat the applicable energy region carefully when we expand on these two parameters.

There are several methods in order to take into account the higher order terms of α and

s13 for example

1. exact formulas in constant matter density profile

2. reduction formulas taking into account the two generation part exactly

In the first method, there does not exist any error generated from the perturbative

expansion, because of the exact treatment of both α and s13 [42]. Furthermore, non-

perturbative effects can be easily investigated by using these exact formulas. The second

method was introduced in our previous paper [44]. In this method, we try to include the

higher order terms of α and s13 partially, except for the terms including the product of

two small parameters. This method includes the higher order terms of α and s13 and is

simply and applicable even in the case of arbitrary matter density profile [44, 45]. Al-

though this method uses only the second order approximation of the amplitude, it has the

notable feature that the third order (three generation) effects such as CP violation can be

calculated.
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7. Summary

In this paper, we consider the method how to approximates the neutrino oscillation prob-

abilities in matter under three generations and the obtained results are summarized as

following.

1. In the framework of two generation neutrino oscillation, we discuss the applicable

region of the perturbative expansion on the small mixing angle in matter. The result

of the perturbation differs largely from the exact numerical calculation in the MSW

resonance point. This means that non-perturbative effects are important even for the

neutrino oscillation in two generations.

2. We extend the method [44, 45] to calculate the approximate formulas, in which non-

perturbative effects of the small parameters ∆m2
21/∆m2

31 and sin θ13, to all channels.

Under the conditions, θ23 = 45◦ and the symmetric matter density profile, we derive

simple approximate formulas of the probabilities in all channels by using the unitary

relation. Although all these approximate formulas are expressed by the amplitudes

calculated within the framework of two generations, it has a notable feature that the

three generation effects such as CP violation can also be calculated.

3. In the three generation neutrino oscillation with matter, we investigate non-perturba-

tive effects of the two small parameters ∆m2
21/∆m2

31 and sin θ13. We compare our

approximate formulas with those from the double expansion, which include the terms

up to the second order in the low and high energy MSW resonance regions. The

obtained result is that the second order formulas show large differences from the

exact numerical calculation, which means that non-perturbative effects of the small

∆m2
21/∆m2

31 and sin θ13 become important in the MSW resonance region.

Finally, we describe two problems that we could not fully address in this paper, and which

are tasks for future research.

1. The approximate formulas in this paper are derived by using the condition θ23 =

45◦, which is the center value obtained from the atmospheric neutrino experiments.

However, but differences from this value may exist within 90% confidence level.

2. The condition for the symmetric matter density is satisfied in the 1-dimensional

models, like the PREM and the ak135f, but the actual matter density, for example,

that from J-PARC to Beijing is not symmetric [52]. Therefore, our aim for future

work is, to derive more sophisticated approximate formulas that hold not only in

symmetric matter but in arbitrary matter as well.

To solve the above two problems are the future works This is now included in the upper

sentence.
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A. General feature of CP dependence

In this appendix we calculate the coefficients of the probabilities in detail. We show that

the 2-3 mixing angle and the CP phase are not affected by matter, from a different point

of view as described in our previous paper [41]. This result means that we only have to

consider the matter effects on four parameters (∆m2
21, θ12) and (∆m2

31, θ13). By using this

result, we can understand the matter effects in three generations, which become complex

compared with that in two generations.

A.1 Remarkable Features of Effective Masses

In this subsection, we show that (θ23, δ) do not affect the effective mass in three

generation Hamiltonian. If we express the effective Hamiltonian in matter as

H = Udiag(0,∆21,∆31)U
† + diag(a, 0, 0), (A.1)

the equation of eigenvalue is given by

det(t − H) = t3 − (∆21 + ∆31 + a)t2

+ (∆21∆31 + a(∆21(1 − |Ue2|2) + ∆31(1 − |Ue3|2)))t − a∆21∆31|Ue1|2 = 0,(A.2)

and by solving this equation, we obtain the effective masses as

λ1 =
A

3
− 1

3

√

A2 − 3BS −
√

3

3

√

A2 − 3B
√

1 − S2 (A.3)

λ2 =
A

3
− 1

3

√

A2 − 3BS +

√
3

3

√

A2 − 3B
√

1 − S2 (A.4)

λ3 =
A

3
+

2

3

√

A2 − 3BS (A.5)

[46], where A,B,C and S are defined by

A = ∆21 + ∆31 + a (A.6)

B = ∆21∆31 + a[∆21(1 − |Ue2|2) + ∆31(1 − |Ue3|2)] (A.7)

C = a∆21∆31|Ue1|2 (A.8)

S = cos

[

1

3
arccos

(

2A3 − 9AB + 27C

2
√

(A2 − 3B)3

)]

. (A.9)

These effective masses depend only on the following three vacuum mixing angles

|Ue1| = c12c13, |Ue2| = s12c13, |Ue3| = s13. (A.10)

One can see from these equalities that the effective masses are independent of the 2-3

mixing angle θ23 and the CP phase δ. Next, let us consider this result from a different

point of view.
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A.2 Decomposition of 2-3 mixing and CP Phase from Hamiltonian

In this section, we separate θ23 and δ from the Hamiltonian and we study the depen-

dence of the amplitudes on the two small parameters α and s13. The Standard Parametriza-

tion is defined by

U = O23ΓO13Γ
†O12, (A.11)

where the CP phase matrix Γ is given by

Γ = diag(1, 1, eiδ). (A.12)

The CP phase matrix Γ and the 1-2 mixing matrix O12 are commutable as

[Γ, O12] = [Γ,diag(0,∆21,∆31)] = 0. (A.13)

Therefore, the Hamiltonian can be separated as

H(t) = Udiag(0,∆21,∆31)U
† + diag(a(t), 0, 0) = O23ΓH ′(t)Γ†OT

23, (A.14)

where H ′(t) is defined by

H ′(t) = O13O12diag(0,∆21,∆31)O
T
12O

T
13 + diag(a(t), 0, 0). (A.15)

This means that the 2-3 mixing and the CP phase can be separated from the part which

includes the matter effects a(t).

In the case of constant matter density profile, we obtain

det(λ − H) = det(λ − H ′), (A.16)

the 2-3 mixing angle and the CP phase do not affect the eigenvalue equation. Accordingly,

the effective masses are independent of the 2-3 mixing angle and the CP phase, which

coincide with the result obtained in the previous subsection.

A.3 Exact CP and 2-3 mixing Dependence of Oscillation Probabilities

Here, let us consider the case in which we apply the above discussion used in the

Hamiltonian to the amplitude. Solving the Schrodinger eq. for the amplitude in matter,

we obtain

S(t) = T exp

{

−i

∫

H(t)dt

}

. (A.17)

By using this, we obtain

S(t) = T exp

{

−i

∫

O23ΓH ′(t)Γ†OT
23dt

}

= O23ΓT exp

{

−i

∫

H ′(t)dt

}

Γ†OT
23

= O23ΓS′(t)Γ†OT
23 (A.18)

from (A.14). Therefore, S(t) satisfies

S(t) = O23ΓS′(t)Γ†OT
23. (A.19)
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From this equation, we obtain

P (νe → νe) = Cee, (A.20)

P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ , (A.21)

when the initial or final state is νe, and

P (να → νβ) = Aαβ cos δ + Bαβ sin δ + Cαβ + Dαβ cos 2δ + Eαβ sin 2δ, (A.22)

in the case of να, νβ = νµ, ντ [41]. The final result is given by

P (νe → νe) = Cee = |S′
ee|2, (A.23)

P (νe → νµ) = Aeµ cos δ + Beµ sin δ + Ceµ, (A.24)

Aeµ = 2Re[S
′∗
µeS

′
τe]c23s23, (A.25)

Beµ = −2Im[S
′∗
µeS

′
τe]c23s23, (A.26)

Ceµ = |S′
µe|2c2

23 + |S′
τe|2s2

23, (A.27)

P (νe → ντ ) = Aeτ cos δ + Beτ sin δ + Ceτ , (A.28)

Aeτ = −2Re[S
′∗
µeS

′
τe]c23s23, (A.29)

Beτ = 2Im[S
′∗
µeS

′
τe]c23s23, (A.30)

Ceτ = |S′
µe|2s2

23 + |S′
τe|2c2

23, (A.31)

P (νµ → νµ) = Aµµ cos δ + Bµµ sin δ + Cµµ + Dµµ cos 2δ + Eµµ sin 2δ, (A.32)

Aµµ = 2Re[(S′
µµc2

23 + S′
ττs

2
23)

∗(S′
τµ + S′

µτ )]c23s23, (A.33)

Bµµ = −2Im[(S′
µµc2

23 + S′
ττs

2
23)

∗(S′
τµ − S′

µτ )]c23s23, (A.34)

Cµµ = |S′
µµ|2c4

23 + |S′
ττ |2s4

23 + (|S′
µτ |2 + |S′

τµ|2 + 2Re[S
′∗
µµS′

ττ ])c
2
23s

2
23, (A.35)

Dµµ = 2Re[S
′∗
τµS′

µτ ]c2
23s

2
23, (A.36)

Eµµ = 2Im[S
′∗
τµS′

µτ ]c
2
23s

2
23, (A.37)

P (ντ → ντ ) = Aττ cos δ + Bττ sin δ + Cττ + Dττ cos 2δ + Eττ sin 2δ, (A.38)

Aττ = −2Re[(S′
µµs2

23 + S′
ττc

2
23)

∗(S′
τµ + S′

µτ )]c23s23, (A.39)

Bττ = 2Im[(S′
µµs2

23 + S′
ττc

2
23)

∗(S′
τµ − S′

µτ )]c23s23, (A.40)

Cττ = |S′
µµ|2s4

23 + |S′
ττ |2c4

23 + (|S′
µτ |2 + |S′

τµ|2 + 2Re[S
′∗
µµS′

ττ ])c
2
23s

2
23, (A.41)

Dττ = 2Re[S
′∗
τµS′

µτ ]c2
23s

2
23, (A.42)

Eττ = 2Im[S
′∗
τµS′

µτ ]c
2
23s

2
23, (A.43)

P (νµ → ντ ) = Aµτ cos δ + Bµτ sin δ + Cµτ + Dµτ cos 2δ + Eµτ sin 2δ, (A.44)

Aµτ = −2Re[(S′
µµ − S′

ττ )
∗(S′

τµc2
23 − S′

µτs
2
23)]c23s23, (A.45)

Bµτ = 2Im[(S′
µµ − S′

ττ )
∗(S′

τµc2
23 + S′

µτs
2
23)]c23s23, (A.46)

Cµτ = |S′
µτ |2s4

23 + |S′
τµ|2c4

23 + (|S′
µµ|2 + |S′

ττ |2 − 2Re[S
′∗
µµS′

ττ ])c
2
23s

2
23, (A.47)

Dµτ = −2Re[S
′∗
τµS′

µτ ]c
2
23s

2
23, (A.48)

Eµτ = −2Im[S
′∗
τµS′

µτ ]c2
23s

2
23. (A.49)
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